Monatshefte für Chemie 103, 1039—1043 (1972) © by Springer-Verlag 1972

Röntgenographische Untersuchungen im System Li₂O-Al₂O₃-Fe₂O₃-GeO₂

(Kurze Mitteilung)

Von

F. Haider, K. J. Seifert und H. Nowotny

Aus dem Institut für physikalische Chemie der Universität Wien

(Eingegangen am 2. August 1971)

Li₂O—Al₂O₃—Fe₂O₃—GeO₂ gewinnt als Modellsystem für die Aufklärung glaskeramischer Vorgänge in Silikaten im allgemeinen und wegen der Seltenen-Erd-dotierten Lithiumgermanat-Gläser als Laser im besonderen zunehmende Bedeutung¹⁻³. Ferner sind Halbleitereigenschaften wegen des dielektrisch wirksamen Li⁺-Ions und der zu kooperativen magnetischen Erscheinungen befähigten Fe³⁺-Ionen in Verbindung mit einer Aluminiumoxid—Germaniumoxid-Matrix in Betracht zu ziehen^{4, 5}.

Nachstehend wird im wesentlichen über die röntgenographische Untersuchung des Al/Fe-Austausches in den Phasen der Dreistoffe, $Li_2O-Al_2O_3-GeO_2$ und $Li_2O-Fe_2O_3-GeO_2$, berichtet.

Gemische der Oxide (bzw. Li_2CO_3) — etwa 1 g Proben — wurden in Platintiegeln an Luft 30 Min. bei 1400° erschmolzen bzw. gesintert, sodann abgeschreckt und mehrere Stunden zwischen 900° und 1000 °C getempert. Gitterparameter und Löslichkeit der kristallinen Reaktionsprodukte wurden aus Pulver-, Diffraktometer- und Einkristallaufnahmen ermittelt.

1. Die Dreistoffe Li₂O-Al₂O₃-GeO₂ und Li₂O-Fe₂O₃-GeO₂

Auf dem Schnitt H-LiAlO₂—GeO₂ liegt bei 1400 °C zwischen H-Li₂Al₂O₄ und Li_{1,33}(Al_{1,33}Ge_{0,66})O₄ eine tetragonale Mischphase der Zusammensetzung Li_{2-x}Al_{2-x}Ge_xO₄ vor, die auf einen merklichen Li⁺ + Al³⁺/Ge⁴⁺-Austausch hinweist⁶. Im Teilsystem LiAlGeO₄—Li₂GeO₃—GeO₂ bilden sich bei dieser Temperatur ausschließlich Glasschmelzen. Je nach Zusammensetzung kristallisieren bei 900 °C aus Gläsern des Bereiches Li_{1,33}Al_{1,33}Ge_{0,66}O₄—Li_{0,8}Al_{0,8}Ge_{1,2}O₄ Germanium-eukryptit (LiAlGeO₄), zwischen Li_{0,9}Ge_{2,1}O₆ und Li_{1,4}Ge_{1,6}O₆ bei 950 °C H-Germaniumspodumen⁶ (H-LiAlGe₂O₆), oder bei 900 °C T-LiAlGe₂O₆⁷.

Die Löslichkeit von GeO₂ in H-LiFeO₂⁸ zwischen 1000 und 1200 °C ist äußerst gering. In Übereinstimmung mit dem Befund von Blasse⁹ bildet sich an Luft aus stöchiometrischen Ansätzen, Li₂O · Fe₂O₃ · 2 GeO, keine dem Germanium-eukryptit analoge Verbindung. Glasbereiche existieren im System Li₂O—Fe₂O₃—GeO₂ nur unmittelbar in der Nähe von GeO₂ (bis etwa 5:5:90) und Li₂GeO₃ (bis etwa 40:20:40 Mol%). Dagegen wird bei 1400 °C eine Verbindung LiFeGe₂O₆ beobachtet, deren homogener Bereich sich von Li_{1,5}Fe_{1,5}Ge_{1,5}O₆ bis Li_{0,6}Fe_{0,6}Ge_{2,4}O₆ erstreckt. Ihre Struktur ist dem Diopsid verwandt. Tab. 1 zeigt die d-Werte von T-LiAlGe₂O₆ und LiFeGe₂O₆. Die Gitterparameter der Klinopyroxene wurden aus Weissenberg- und Diffraktometeraufnahmen bestimmt. In Tab. 2 sind die bisher bekannten Germanatklinopyroxene einander gegenübergestellt.

Die Aufteilung der Phasenfelder Li₂GeO₃—Al₂O₃ bzw. Li₂GeO₃— Fe₂O₃ (bei 1400 und 900 °C) wird durch die unterschiedliche GeO₂-Löslichkeit in den Randverbindungen, H-LiAlO₂ und H-LiFeO₂, mitbestimmt. Z. B. findet man in einer Probe mit der Zusammensetzung Li₂O · Al₂O₃ · GeO₂ bei 1400° die Li_{2-x}Al_{2-x}Ge_xO₄-Mischphase neben einem geringen Glasanteil, aus dem bei 900 °C Germanium-eukryptit kristallisiert. In der analogen Probe des Dreistoffes Li₂O—Fe₂O₃—GeO₂ tritt bei 1400 °C eine ternäre Lithiumeisenspinellphase neben einer Glasphase auf, aus der sich bei 900 °C Lithiummetagermanat bildet.

Die Probe 20:60:20 (Mol%) besteht in beiden Dreistoffen zum größten Teil aus ternären Spinellmischphasen, in denen bei 1400 °C wenig GeO₂ gelöst ist. Oberhalb von 1500 °C beeinflußt der Sauerstoffpartialdruck der Ofenatmosphäre bereits die Gleichgewichtszusammensetzung⁹⁻¹¹.

2. Quaternäre Oxidphasen im System Li₂O—Al₂O₃—Fe₂O₃—GeO₂

Der Al/Fe-Austausch in den Klinopyroxenphasen führt auf das pseudobinäre Teilsystem LiAlGe₂O₆—LiFeGe₂O₆, das bei 1400 und 900 °C untersucht wurde. Bei 1400 °C entwickelt sich aus LiFeGe₂O₆ eine quaternäre Oxid-Mischphase LiFe_{1-x}Al_xGe₂O₆ (x bis 0,50) (Tab. 3). Aluminiumreichere Proben bestehen überwiegend aus Glas, dessen Neigung zur Kristallisation mit steigendem Fe₂O₃-Gehalt zunimmt. Bei 900°C entmischen sich die Klinopyroxenphasen zwischen LiAl_{0,85}Fe_{0,15}Ge₂O₆ und LiAl_{0,20}Fe_{0,80}Ge₂O₆. Eine H-LiAlGe₂O₆-Mischphase bildet sich in Gegenwart von Fe₂O₃ nicht (Tab. 3).

Im Teilsystem LiAlGeO₄—, "LiFeGeO" reicht der Glasbereich bei 1400 °C von LiAlGeO₄ bis etwa LiAl_{0,50}Fe_{0,50}GeO₄, bei höherem Hämatitgehalt kristallisiert eine quaternäre Klinopyroxenmischphase, LiFe_{1-x}Al_xGe₂O₆ (0 < x < 0.5).

b) LiFeGe₂O₆

(hkl)	d	I	(hkl)	d	I
(110)	6,220	ss	(110)	6,407	s
(200)	4,628	\mathbf{st}	(200)	4,677	\mathbf{st}
(111)	4,473	\mathbf{st}	(T 11)	4,501	\mathbf{st}
(020)	4,200	\mathbf{st}	(020)	4,397	sst
(120)	3,824	SSS	(111)	3.615	\mathbf{ms}
(111)	3,534	\mathbf{ms}	(021)	3.328	st
(021)	3,230	sst	(220)	3,203	SS
(220)	3,110	S .	$(\overline{2}21)$	3,031	100
$(\overline{2}21)$	2,982	100	(311)	2,967	ss
$(\overline{3}11)$	2,971	s ·	(310)	2,939	$^{\mathrm{st}}$
(310)	2,896	sst	(130)	2,797	ss
(202)	2,643	\mathbf{m}	$(\overline{2}02)$	2,620	SS
$(\overline{1}12)$	2,561	SS	$(\overline{\mathbf{T}}12)$	2,569	\mathbf{ms}
(002)	2,526	\mathbf{sst}	$(\overline{1}31)$	2.558	SS
(131)	2.474	s	(002)	2.546	\mathbf{sst}
(221)	2,406	sst	(221)	2.475	sst
$(\overline{3}12)$	2,321	\mathbf{st}	(131)	2.357	\mathbf{st}
(400)	2.313		(400)	2,338	SS
(311)	2.216	\mathbf{st}	$(\overline{3}12)$	2.303	m
(112)	2.169	\mathbf{mst}	(311)	2.264	\mathbf{ms}
$(\overline{4}21)$	2.120	SS	$(\overline{2}22)$	2.251	88
$(\overline{3}31))$			(112)	2,204	SS
(040)	2,100	mst	(040)	2,198	ss
(202)	1,948	ss	(331)	2,146	SS
(041)	1,939	$^{\mathrm{st}}$	$(\overline{4}02)$	2,091	SS
$(\overline{5}11)$	1,925	\mathbf{st}	(041)	2,018	\mathbf{ms}
(240)	1,912	s	$(\overline{2}41)$	1,946	\mathbf{mst}
$(\bar{4}22)$	1,891	s	$(\overline{5}11)$	1,927	m
$(\overline{2}41)$	1,881	\mathbf{st}	$(\overline{4}22)$	1,889	\mathbf{mst}
$(\overline{3}32)$	1,829	ss	(510)	1,830	m
(510)	1,808	\mathbf{st}	(132)	1,798	SS
$(\overline{5}12)$	1,789	\mathbf{st}	$\overline{(\overline{5}12)}$	1,776	\mathbf{s}, \mathbf{d}
(113)	1,732	m	(241)	1,772	m
$(\overline{3}13)$	1,724	\mathbf{m}	(312)	1,686)	
(421)	1,708	\mathbf{m}	$(\overline{2}42)$	1,684	m
(312)	1,654		(042)	1,664	\mathbf{m}
$(\overline{2}23)$	1,652	SSU	$(\overline{2}23)$	1,659	\mathbf{d}
$(\overline{2}42)$	1,644	SS	$(\overline{5}31)$	1,638	$^{\mathrm{st}}$
$(\overline{5}31)$	0.614	at	(441)	1,635	SS
(042)	0,014	su	(440)	1,602	\mathbf{ms}
$(023)^{2}$	1,563	s	(511)	1,571	\mathbf{ms}
(440)	1,555	s	(350)	1,532	\mathbf{st}
(511)	1,541	s	$(\bar{4}42)$	1,516	ms
$(\overline{6}21)$	1,532	88	(060)	1,466	\mathbf{m}
$(\overline{5}13)$	1,520	s	(441)	1,439	SSS
(133)	1,496	m	$(\bar{3}52)$	1,416	\mathbf{ms}

Tabelle 1. Auswertung der Pulveraufnahme von Klinopyroxenverbindungen

a) T-LiAlGe₂O₆ (Germaniumspodumen)

(hkl)	d	Ι	(hkl)	d	I
(442)	1,491	s	(531)	1,402	sst
(350)	1,475	m	(260)	1,399	sst
(242)	1,428	s	$(\overline{2}43)$	1,389	m
(060)	1,400	\mathbf{ms}	(223)	1,378	\mathbf{m}
(711)	1,387)		(712)	1,365	\mathbf{st}
422)	1,386	ms	$(\overline{5}33)$	1,354	mst
$(\overline{3}52)$	1,379	\mathbf{ms}	(550)	1,281	ss
531)	1,369	st	(062)	1,270	sst
$(\bar{2}43)$	1,366	s	(352)	1,229	m
(223) $(\overline{5}33)$	1,353	\mathbf{st}			
$(\overline{3}14)'$	1,330	\mathbf{st}			
(062)	1,224	m			

Fortsetzung (Tabelle 1) D. O.SDIAT TY - -]--.

Tabelle 2. Gitterparameter einiger Germanate mit Klinopyroxenstruktur

Verbindung	a (Å)	b (Å)	c (Å)	β°	V (Å ³)	Autor
T-LiAlGe ₂ O ₆	9,888	8,399	5,397	110,61	420,2	Hahn u. a.
- • .	9,89	$8,40_{5}$	5,40	110,6	421,0)	T
LiFeGe ₂ O ₆	9,89	8,79	5,38	108,9	443,2	diese Arbeit
LiGaGe ₂ O ₆	9,790	5,706	5,347	108,88	$431,1^{'}$	<i>Hahn</i> u. a.
$NaFeGe_2O_6$	10,01	8,94	5,52	108,0	469,8	Bakakin ¹⁰

Tabelle 3. Gitterparameter der Klinopyroxenmischphasen

a (Å)	b (Å)	c (Å)	β (in °)
Eisenklinopyroxenpl	hase $LiAl_xFe_{1-x}G$	$e_2O_6 (1400^\circ) (0 <$	(x < 0,5)
9,89—9,80	8,82 - 8,72	5,38-5,37	109,0-108,5
Eisenklinopyroxenpl	hase $LiAl_xFe_{1-x}Ge$	$e_2O_6 (900^\circ)$	
$9,89 - 9,82_8$	8,79-8,70	5,38-5,37	108,9—109,8
Aluminiumklinopyro	exenphase LiAl ₁₋₂	$_{y}\mathrm{Fe}_{y}\mathrm{Ge}_{2}\mathrm{O}_{6}$ (900°)	I
$9,87_{7} - 9,89_{4}$	$8,39_7 - 8,44_8$	$5,\!40\!-\!5,\!43$	110,6-110,2

Die eisenreichste Probe enthält neben der Eisenklinopyroxenmischphase geringe Mengen von Lithiumeisenspinell. Bei 900 °C kristallisieren aus Glasproben eine quaternäre Germanium-eukryptit-Phase, die bis zur Zusammensetzung LiAl_{0,83}Fe_{0,17}GeO₄ homogen vorliegt, und bei höherem Hämatitgehalt eine quaternäre Eisenklinopyroxenphase.

Diskussion

Chemische Zusammensetzung, Ähnlichkeit der Röntgenmuster und Gitterparameter deuten auf nahe Strukturbeziehungen von T-LiAlGe₂O₆ zu Klinoenstatit¹ und von LiFeGe₂O₆ zu Diopsid bzw. NaFeGe₂O₆¹² hin. Die Breite der Mischungslücke in den Systemen LiAlGe₂O₆—LiGaGe₂O₆¹² und LiAlGe₂O₆—LiFeGe₂O₆ (900 °C) steht im Zusammenhang mit den strukturellen Unterschieden der ternären Oxide. Je unterschiedlicher die Packungsdichte der Sauerstoffionen in diesen, um so breiter ist offensichtlich die Mischungslücke. Die gegenseitige Löslichkeit im Spinellsystem LiAl₅O₈—LiFe₅O₈, zwischen Li(Al_{0,20}Fe_{0,80})₅O₈ und Li(Al_{0,79}Fe_{0,21})₅O₈, stimmt bei 900 °C mit jener des Klinopyroxenteilsystems LiAlGe₂O₆—LiFeGe₂O₆ überein. Die Packungsdichte in den beiden Systemen unterscheidet sich in vergleichbarem Maße. In der Eisenklinopyroxenphase ist das größere Fe³⁺-Ion (r = 0,64 Å) durch das Al³⁺-Ion (r = 0,57 Å) weitergehend ersetzbar als das kleinere Al³⁺-Ion.

Wie im System CaO-MgO-Al₂O₃-Cr₂O₃-SiO₂¹³ scheint die Kristallisation der Lithiumaluminiumgermanatgläser in Gegenwart von Fe_2O_3 über eine primär gebildete Li(Al,Fe)₅O₈-Spinellmischphase zu verlaufen.

Literatur

¹ P. W. McMillan, Glas Ceramics, Academic Press. New York. 1964.

² T. I. Barry, D. Clinton, L. A. Lay, R. A. Mercer und R. P. Miller, J. Mater. Sci. 4, 596 (1969).

³ M. Birnbaum und C. W. Fincher, J. Appl. Phys. 41, 2470 (1970).

⁴ J. C. Schottmiller, D. L. Bowman und C. Wood, J. Appl. Phys. **39**, 1663 (1968).

⁵ H. F. Mataré, Intern. Elektron. Rdsch. 22, 163 (1968).

⁶ W. H. Ratzenböck, K. J. Seifert und H. Nowotny, Mh. Chem. 99, 867 (1968).

7 Th. Hahn und M. Behruzi, Z. Krist. 127, 160 (1968).

⁸ M. Brunel und F. de Bergevin, J. Phys. Chem. Solids 29, 163 (1968).

⁹ G. Blasse, Philips Res. Reports 20, 528 (1965).

¹⁰ A. Muan, J. Amer. Ceram. Soc. 41, 275 (1958).

¹¹ A. Muan, J. Amer. Ceram. Soc. **40**, 420 (1957).

¹² L. P. Solovjeva und V. V. Bakakin, Soviet Physics Crystallography **12**, 517 (1968).

¹³ L. A. Zhunira, V. N. Sharai, V. F. Tsitko und N. N. Khripkova, in: Catalysed Crystallization of Glass, (E. A. Porai-Koshits u. a., Hrsg.), Vol. 3, S. 193. New York: Consultants Bureau. 1964.